
FUNDER

FUNCTIONAL DERIVATIVES FOR PREDICTING METABOLIC RESPONSES

SUPPLEMENTARY INFORMATION

Author: Antonio S. Torralba
Version: 01.01.01

2

INTRODUCTION
Funder is an application that illustrates the calculation of functional derivatives in
metabolic networks. Functional derivatives are closely related to the susceptibilities of a
nonlinear system and can be used to predict its response to external perturbations. One
input flux is considered to be the excitation of the system, whereas the response is any
given velocity or output flux. Although it could be defined to be a concentration, this
possibility has not been implemented in Funder. Estimations of the response can be
given for any variation (perturbation) of the input flux with respect to a reference steady
state. It is not required that such a variation be small, although the accuracy of the
approximation will depend on the order of the approximation, i.e. on how many
functional derivatives of increasing orders are used.

Funder was implemented in C++. The class Susceptibility was defined to calculate and
efficiently store the susceptibilities associated to an object of the abstract class System.
System provides response data to Susceptibility as required. In order to minimize the
number of queries to System, Susceptibility stores the results in a multiple linked list
(classes IntegList and IntegListNode). The user must derive a new class from System
that contains the actual description of the system in terms of differential equations and
appropriate parameters. However, the class System provides a suitable interface with
Susceptibility and methods for the numerical integration of the equations. In principle,
System could be substituted by a database of experimental data, as long as the queries of
Susceptibility can be answered (see description below). Two supporting classes are
provided, Signal and Response, that help manipulate signals and responses of several
orders. Methods include convolution, deconvolution, addition and subtraction of signals
and convolution of signals and susceptibilities, among others.

A part of fructose catabolism was implemented in Funder to illustrate the use of
Susceptibility, System, Signal and Response, and the way a user can derive a concrete
system from the abstract class System. This document is devoted to the description of
these classes and the parameters and dynamics of the example system. Instructions for
compilation and descriptions of the source and output files are also given.

DESCRIPTION OF THE EXAMPLE SYSTEM

A section of fructose catabolism was chosen as an example of a metabolic network (Fig.
1). A dynamic model was built using deterministic ordinary differential equations (see
below), composed of 11 enzymes and 14 metabolites (Tables 1 and 2). This network is a
branched system. The branch involving fructose 1-phosphate occurs in liver, whereas in
muscle fructose is converted to fructose 6-phosphate [Voet, D. and Voet J.G.,
Biochemistry, 1990, John Wiley & Sons, Inc., New York.]. Transport processes

3

between tissues were not included, because they are immaterial to the purpose of
illustrating the calculation of functional derivatives.

Figure 1. Reaction scheme of a portion of fructose catabolism and the adenylate kinase reaction.
For abbreviations, see Tables 1 and 2.

Table 1. Abbreviations of metabolites

METABOLITE ABBREVIATION
Fructose Fru

Fructose 1-Phosphate F1P
Fructose 6-Phosphate F6P

Fructose 1,6-Bisphosphate F1,6BP
Dihydroxyacetone Phosphate DHAP

Glyceraldehyde GAH
Glycerol GOH

Glycerol 3-Phosphate GOP
Glyceraldehyde 3-Phosphate GAP

Adenosine Triphosphate ATP
Adenosine Diphosphate ADP

Adenosine Monophosphate AMP
Nicotinamide Adenine Dinucleotide (Ox.) NAD
Nicotinamide Adenine Dinucleotide (Red.) NADH

The only input to the system is a flux of fructose (Jin). Transformation of this metabolite
into the intermediates of the network leads to glyceraldehyde 3-phosphate, which is
irreversibly extracted with first-order kinetics (Jout). Due to the breakage of the hexoses

4

into trioses, the overall stoichiometry of the network is 1:2. As a consequence, the area
under the first-order susceptibility of the system is 2. (After executing funder, the file
sums.dat is generated that contains the integrals of the susceptibilities. A value of
1.885604 is obtained only because the system reaches a steady state in a very slow way
and hence the susceptibilities cannot be calculated completely.)

Table 2. Abbreviations of enzymes

ENZYME ABBREVIATION E.C. NUMBER MECHANISM
Hexokinase HK 2.7.1.1 Irreversible Random Bi-Bi

Phosphofructokinase PFK 2.7.1.11 Hill
F1,6BP Aldolase F1,6BP ALD 4.1.2.13 Reversible Ordered Uni-Bi

F1P Aldolase F1P ALD 4.1.2.13 Reversible Ordered Uni-Bi
Fructokinase FK 2.7.1.4 Reversible Ordered Bi-Bi

Alcohol Dehydrogenase ADH 1.1.1.1 Reversible Ordered Bi-Bi
Glycerokinase GK 2.7.1.30 Reversible Ordered Bi-Bi

GOP Dehydrogenase GOPDH 1.1.99.5 Reversible Ordered Bi-Bi
Triokinase TK 2.7.1.28 Irreversible Ordered Bi-Bi

Triose Phosphate Isomerase TPI 5.3.1.1 Equilibrium
Adenylate Kinase AK 2.7.4.3 Equilibrium

The reactions catalyzed by triose phosphate isomerase and adenylate kinase are
considered to be in equilibrium, with the following equilibrium constants:

 []

[]
TPI
eqK =

GAP
DHAP

 (1)

 [][]

[]
AK
eqK =

ATP AMP
ADP

 (2)

Two conservation relationships hold:

[] [] TNAD+ =NADH NAD (3)
[] [] [] TAP+ + =ATP ADP AMP (4)

The rate equations used in the model are described in Table 3 and the values of the
parameters, including equilibrium constants and others, are listed in Tables 4-9. The
equilibrium constant of triose phosphate isomerase, Eq. (1), can be used to eliminate
one variable, by defining the pool [GAP]+[DHAP]. In addition, the concentrations of
adenylates can be calculated, for a given ratio r = [ATP]/[ADP], from the conservation
Eq. (4) and the equilibrium constant of adenylate kinase, Eq. (3). These simplifications
are listed below, along with a list of the differential equations of the model.

5

Table 3. Rate equations used in the model
MECHANISM RATE EQUATION MEANING

�V Maximum Velocity
MK Michaelis Constant
R R-T Equilibrium Constant
n Hill Coefficient

Sus Substrate
Inh Inhibitor

Hill
� �

� �

� �
� �

�
�

�

�

�
�

�

�
��

�
�

n
n

n
MM

n

Sus
Act

InhRKK

SusVv

Act Activator
�V Maximum Velocity

SusK Subs. Michaelis Constant
� Mass Action Ratio
eqK Equilibrium Constant

1PK Prod. 1 Michaelis Constant
2PK Prod. 2 Michaelis Constant

i
PK

2
Prod. 2 Inhibition Constant

Sus Substrate
1P Product 1

Reversible
Ordered Uni-Bi

� �

� � � � � � � �� � � �� �

�
�
�

�

�

�
�
�

�

�

�����

�
�

�

�

�
�

�

� �
	

 �

21221

212211

1

PPi
PSusPPSus

eqSus

KK
PP

KK
PSus

K
P

K
P

K
Sus

KK
Sus

Vv

2P Product 2
�V Maximum Velocity
d
SK

1 Sus. 1 Dissociation Constant
d
SK

2 Sus. 2 Dissociation Constant
2SK Sus. 2 Michaelis Constant

1S Substrate 1

Irreversible
Random Bi-Bi � � � � � �� �

1

2121

212

2

211

�

�

�
�
�

�

�

�
�
�

�

�

����
SS

KK

S
K

SK

KK
Vv

S
d
SS

d
S

S
d
S

2S Substrate 2
�V Maximum Velocity

1SK Sus. 1 Michaelis Constant
2SK Sus. 2 Michaelis Constant

i
SK

1
Sus. 1 Inhibition Constant

1S Substrate 1

Irreversible
Ordered Bi-Bi � � � � � �� �

1

2121

21211

�

�

�
�
�

�

�

�
�
�

�

�

����
SS

KK

S
K

S
K

Vv
S

i
SSS

2S Substrate 2
�V Maximum Direct Velocity
�V Maximum Reverse Velocity
1SK Sus. 1 Michaelis Constant
2SK Sus. 2 Michaelis Constant
1PK Prod. 1 Michaelis Constant
2PK Prod.2 Michaelis Constant

i
SK

1
Sus. 1 Inhibition Constant

i
PK

1
Prod.1 Inhibition Constant

i
PK

2
Prod. 2 Inhibition Constant

1S Substrate 1
2S Substrate 2
1P Product 1

Reversible
Ordered Bi-Bi

� �� � � �� �

� � � � � � � � � �� �

� �� � � �� � � �� �

� �� �� � � �� �� �

��
�
�
�
�
�
�
�
�
�

�

�

��
�
�
�
�
�
�
�
�
�

�

�

�

���

������

�
�
�

�

�

�
�
�

�

�

�

	

��

i
PS

i
S

i
PS

i
S

i
PP

i
PS

i
S

S
i
PP

i
S

P

S
i
S

i
P

i
PP

P

S
i
S

S
i
S

i
PPS

i
S

KKK
PPS

KKK
PSS

KK
PP

KKK

PSK

KKK

PSK

KK
SS

K
P

KK

PK

KK

SK

K
S

KK
PPV

KK
SSV

v

221121

21221

1

211

2

21221

2

21

1

1

2121

212121

212211

212121

2121

1

2P Product 2

6

POOL OF TRIOSES

[]
,F BPALD F PALD GOPDH TPI

d
dt

= + + −1 6 1v v v v
DHAP (5)

[]
,F BPALD TK TPI out

d
J

dt
= + + −1 6v v v

GAP (6)

[] []()
,F BPALD F PALD GOPDH TK out

d
J

dt
+

= + + + −1 6 12v v v v
DHAP GAP

(7)

CONCENTRATIONS OF THE ADENYLATE SYSTEM

[]

[]
r =

ATP
ADP

(8)

[] T
AK
eq

r AP
K r r

=
+ +

2

2ATP (9)

[] T
AK
eq

rAP
K r r

=
+ +

2ADP (10)

[]
AK
eq T

AK
eq

K AP
K r r

=
+ +

2AMP (11)

DIFFERENTIAL EQUATIONS

[]
in HK FK

d
J

dt
= − −v v

Fru (12.1)

[]
HK PFK

d
dt

= −v v
F6P (12.2)

[]
,PFK F BPALD

d
dt

= − 1 6v v
F1,6BP (12.3)

[]
FK F PALD

d
dt

= − 1v v
F1P (12.4)

[]
(),F BPALD F PALD GOPDH outTPI

eq

d
J

dt K
= + + + −

+
1 6 1

1 2
1 TKv v v v

DHAP (12.5)

[]
F PALD ADH TK

d
dt

= − −1v v v
GAH (12.6)

[]
ADH GK

d
dt

= −v v
GOH (12.7)

[]
GK GOPDH

d
dt

= −v v
GOP (12.8)

[]
(),

TPI
eq

F BPALD F PALD GOPDH outTPI
eq

Kd
J

dt K
= + + + −

+
1 6 12

1 TKv v v v
GAP (12.9)

[] []
GOPDH ADH

d d
dt dt

=− = −v v
NADH NAD (12.10)

7

Table 6. Parameters of phosphofructokinase
SYMBOL PFK

�V 10.0
MK 0.1

R
a 0.008

n 4.0
Sus F6P
Inh ATP
Act AMP

a Equilibrium constant
��

� kkR of

where R=Relaxed form and T=Tight
form (25,2.0 ��

��
kk).

nATP
�

k

nAMP�
k

PFKR PFKT

Table 5. Parameters of aldolases
SYMBOL F1,6BP ALD F1PALD

�V 5.0 10.0
SusK 0.7 0.1
eqK 0.3 10.0

1PK 3.0 10.0
2PK 1.0 10.0

i
PK

2
7.5 1.0

Sus F1,6BP F1P
1P DHAP DHAP
2P GAP GAH

Table 4. Parameters of hexokinase
SYMBOL HK

�V 1.0
d
SK

1
1.5

d
SK

2
2.0

2SK 0.8
1S Fru
2S ATP

Table 7. Parameters of triokinase
SYMBOL TK

�V 5.0
1SK 0.1
2SK 1.0

i
SK

1
1.0

1S GAH
2S ATP

Table 8. Parameters of enzymes with reversible ordered bi-bi mechanism
SYMBOL FK ADH GK GOPDH

�V 10.0 1.0 3.0 5.0
�V 0.1 2.0 1.0 1.0
1SK 1.0 1.0 0.1 0.5
2SK 1.0 0.5 0.7 0.25
1PK 10.0 1.0 0.5 1.0
2PK 10.0 0.75 1.0 1.0

i
SK

1
0.5 1.0 1.0 1.0

i
PK

1
10.0 10.0 5.0 1.0

i
PK

2
100.0 5.0 15.0 1.0

1S ATP GAH GOH GOP
2S Fru NADH ATP NAD
1P F1P GOH GOP DHAP
2P ADP NAD ADP NADH

8

COMPILATION AND FILES

PROJECT NAME: Funder

VERSION: 01.01.01

COMPILATION INSTRUCTIONS

� Decompress funder01.01.01.tar.gz (see below).
� In Unix systems, build the project with the provided Makefile. There are two

alternative compilation modes. The default mode generates the executable file
funder. This file calculates the susceptibilities of the example system up to order 3
and uses them to produce several estimations of responses for different inputs to the
system (see below for specifications of the model). It also writes the susceptibilities
to file in several formats. An alternative mode generates the executable file
funderalt, which reads the susceptibilities of the example from the files suscept.dat
and errors.dat. This alternative is recommended once the susceptibilities have been
calculated, since such a process can take a couple of hours (about 1h in a PC AMD
K7 at 750 MHz). Both compilation modes produce the library funderlib.a in an
intermediate step. This should be used to compile user-defined systems. However, if
your data are noisy, you may want to use the single-file source code funderns.cpp
(see below).

Default compilation: make [example]

Alternative compilation: make alt_example

Library compilation only: make library

Clean objects with: make clean

� In Non-Unix systems or if experiencing problems with make, the file funder.cpp
can be used to compile funder and funderalt. This is the single-file version of the
source code. It compiles without errors with GNU g++ (versions 2.8.1 and egcs-

Table 9. Other parameters
SYMBOL VALUE MEANING

TPI
eqK 0.045 TPI Equilibrium Constant
AK
eqK 0.45 AK Equilibrium Constant
r 1.0 Ratio � � � �ADPATP
TAP 120.0 Total Adenylate Concentration
TNAD 1.0 Total Nicotine Adenine Dinucleotide Concentration

9

2.91.57) and Visual C++ 5.0. If your data are noisy, you probably want to use
funderns.cpp, which implements Savitzky-Golay filters for smoothing and
differentiation.

Compile funder with: g++ funder.cpp –o funder –lm

Compile funderalt with: g++ funder.cpp –o funder –lm –D FD_FILE

Compile funderns with: g++ funderns.cpp –o funderns –lm

DESCRIPTION OF FILES

funder01.01.01.tar.gz
Source code and Makefile.
Contains: Makefile, funder.h, example.h, funder.cpp, fdsusder.cpp, fdsusio.cpp,

fdsusaux.cpp, fdlist.cpp, fdsignal.cpp, fdrespon.cpp, fdsystem.cpp,
exsystem.cpp, exmain.cpp, funderns.cpp

Decompression: gzip –d funder01.01.01.tar.gz
tar xf funder01.01.01.tar

Makefile
To be used by make (unix systems) for compiling and linking the example
executable file and the library funderlib.a. For different modes of compilation, see
Compilation Instructions above.

funder.cpp
Single-file version of the source code. Includes the files funder.h, example.h,
fdsusder.cpp, fdsusio.cpp, fdsusaux.cpp, fdlist.cpp, fdsignal.cpp, fdrespon.cpp,
fdsystem.cpp, exsystem.cpp and exmain.cpp. For compilation with g++, see
above.

funderns.cpp
Single-file version of the source code. It implements a Savitzky-Goaly filter for
computing derivatives, instead of a Ridders-Neville algorithm. Hence it is noise-
resistant. NOTE: Errors are not calculated. Therefore several flags, like
FD_ERRORS and FD_WITH_ERRORS are ignored. The method
Susceptibility::ReadBinaryErrors is not available in this version.

10

funder.h
Header file. Constant definitions and class prototypes of Susceptibility, IntegList,
IntegListNode, System, Signal and Response. It also declares the structures ILN
(linked-list node description), DER (derivative parameters), FUNDER (functional
derivative parameters), APPDER (approximate functional derivative parameters).

example.h
Header file. Constant definitions and class prototype of UserSystem, the user-
defined system that describes the example model.

fdsusder.cpp
C++ Source file. Susceptibility class: Methods for derivative calculations.
Methods: Susceptibility constructors and destructors, FunctionalDerivative,

IterTimes, TensorIndexes, Derivative, CalculateDiff, ApproxDer,
IterateDer.

fdsusio.cpp
C++ Source file. Susceptibility class: Methods for file input/output.
Methods: Susceptibility constructor from file, WriteToBinaryFile,

ReadBinaryErrors, RawToTextFile, FirstToTextFile,
SecondToTextFile, ThirdToTextFile.

fdsusaux.cpp
C++ Source file. Susceptibility class: Methods for auxiliary functions.
Methods: AllocateSusceptibilities, FreeSusceptibilities, CombinatorialFactor,

Combinations, PermutaRepe, Facts, MaxTime, Displacement,
TestSums, Sum, GetOrder, GetSize, GetTimeInc, operator*.

fdlist.cpp
C++ Source file. IntegListNode and IntegList classes: Methods for the linked list
and its nodes.
Methods: IntegListNode: Construction and destruction, SearchLevel, Insert.

IntegList: Construction and destruction, GetData, Exists.

fdsignal.cpp
C++ Source file. Signal class: Methods for signal manipulation
Methods: Construction and destruction, operator+, operator-, operator*,

operator/ (for signals and constants), operator=, Derivative, Integral,
Primitive, WriteToTextFile, ReadFromTextFile, GetSize,
GetTimeInc, GetPtrToData

11

fdrespon.cpp
C++ Source file. Response class: Response of all orders of a system.
Methods: Construction and destruction, operator=, operator[], WriteToTextFile,

GetOrder, GetSize, GetTimeInc.

fdsystem.cpp
C++ Source file. Abstract System class: Basic functional definition and operation.
Methods: Construction and destruction, Functional, IntegrateOneStep, InitSS.

exsystem.cpp
C++ Source file. Example of user-defined system class derived from System.
Methods: Construction from System and destruction, EvaluateSystem (virtual

function of System; must be provided), VelRevOrdUniBi,
VelIrrRanBiBi, VelRevOrdBiBi, VelIrrOrdBiBi, VelPFK,
IntegrateInputVariation.

exmain.cpp
C++ Source file. Main function.

funder
Executable file generated by make. It calculates the susceptibilities of the example
system up to third order and uses them to illustrate the functional-Taylor-series
approximation to the response by convoluting several signals (input flux
variations) with the susceptibilities. The exact integration of the equations is also
calculated.
Generated files: first.dat, second.dat, third1.dat, raw.dat, sums.dat, suscept.dat,

errors.dat, in05min.dat, out05min.dat, con05min.dat, in2plus.dat,
out2plus.dat, con2plus.dat, in14940.dat, out14940.dat,
con14940.dat, in19930.dat, out19930.dat, con19930.dat,
in24920.dat, out24920.dat, con24920.dat.

funderalt
Executable file generated by make alt_example. It reads the susceptibilities of
the example system and their errors from suscept.dat and errors.dat,
respectively, and uses them to illustrate the functional-Taylor-series
approximation to the response by convoluting several signals (input flux
variations) with the susceptibilities. The exact integration of the equations is also
calculated. This executable should be use if the files suscept.dat and errors.dat
are available, since the calculation of the susceptibilities can take several hours.
Generated files: in05min.dat, out05min.dat, con05min.dat, in2plus.dat,

out2plus.dat, con2plus.dat, in14940.dat, out14940.dat,

12

con14940.dat, in19930.dat, out19930.dat, con19930.dat,
in24920.dat, out24920.dat, con24920.dat.

funderns
Executable file generated from funderns.cpp. It calculates the susceptibilities of
the example system up to third order by means of a Savitzky-Golay algorithm and
uses them to illustrate the functional-Taylor-series approximation to the response
by convoluting several signals (input flux variations) with the susceptibilities. The
exact integration of the equations is also calculated.
Generated files: first.nsd, second.nsd, third1.nsd, raw.nsd, sums.nsd, suscept.nsd,

in05min.nsd, out05min.nsd, con05min.nsd, in2plus.nsd,
out2plus.nsd, con2plus.nsd, in14940.nsd, out14940.nsd,
con14940.nsd, in19930.nsd, out19930.nsd, con19930.nsd,
in24920.nsd, out24920.nsd, con24920.nsd.

funderlib.a
Library containing the object files of the classes Susceptibility, IntegList,
IntegListNode, Signal, Response and System. Users should compile their own
source files with this library as follows:

g++ <user.cpp files> funderlib.a –o <user_exe_file> -lm

Object files: fdsusder.o, fdsusio.o, fdsusaux.o, fdlist.o, fdsignal.o, fdrespon.o,
fdsystem.o

suscept.dat
File of susceptibilities of the example system, in binary format. Generated by
funder.

errors.dat
File of errors of the susceptibilities of the example system, in binary format.
Generated by funder.

first.dat
First-order susceptibility of the example system, in text format. The space-
separated columns of the file are:

real_time susceptibility_value [error_value o/*]

The last two columns are written only if the method Susceptibility ::
FirstToTextFile is called with the flag FD_WITH_ERRORS. The last column is
‘o’, if the specified accuracy was achieved, or ‘*’, if not. Generated by funder.

13

second.dat
Second-order susceptibility of the example system, in text format. The space-
separated columns of the file are:

real_time second_perturbation_time susceptibility_value [error_value o/*]

The last two columns are written only if the method Susceptibility ::
SecondToTextFile is called with the flag FD_WITH_ERRORS. The last column is
‘o’, if the specified accuracy was achieved, or ‘*’, if not. If the flag
FD_GNUPLOT is on, method Susceptibility :: SecondToTextFile writes a carriage
return after every real time block. This is required for plotting in the parametric
mode of the GNU plot utility gnuplot. Generated by funder.

third1.dat
Section of the third-order susceptibility of the example system for the second
perturbation time fixed at initial time, in text format. The space-separated columns
of the file are:

[second_perturbation_ time] real_time third_perturbation_time susceptibility_value [error_value o/*]

The fixed second perturbation time is written (in the first column) only if the
method Susceptibility :: ThirdToTextFile is called with the flag
FD_SECOND_TIME. The last two columns are written only if the flag
FD_WITH_ERRORS is on. The last column is ‘o’, if the specified accuracy was
achieved, or ‘*’, if not. If the flag FD_GNUPLOT is on, method Susceptibility ::
ThirdToTextFile writes a carriage return after every real time block. This is
required for plotting in the parametric mode of the GNU plot utility gnuplot.
Columns 2:3:4 or 1:2:3 should be used if the flag FD_SECOND_TIME was on or
off, respectively. Generated by funder.

raw.dat
Raw data, that is, the susceptibilities as they are stored in the memory of the
computer, but in text format. This file should be used primarily to check the
correctness of the calculations. If the method Susceptibility :: RawToTextFile is
called with the flag FD_WITH_ERRORS, two additional columns are written
with the errors and the accuracy, ‘o’ (accurate) or ‘*’ (inaccurate):

susceptibility_order susceptibility_value [error_value o/*]

Generated by funder.

14

sums.dat
The integrals of the susceptibilities of the example system. Generated with the
method Susceptibility :: TestSums. Generated by funder.

in05min.dat/out05min.dat/con05min.dat
Input (in), exact response (out) and approximate response by convolution with the
susceptibilities (con) of the example system with input flux variation 5.0��� inJ .
The first column of all files is real time and the second one is the value of the
signal. In the case of the ‘con’ file, the second column is the sum of responses of
all orders, which should be compared to ‘out’. The following columns are one-
order responses, starting with the first-order one. Generated by funder and
funderalt.

in2plus.dat/out2plus.dat/con2plus.dat
Input (in), exact response (out) and approximate response by convolution with the
susceptibilities (con) of the example system with input flux variation 2�� inJ .
The first column of all files is real time and the second one is the value of the
signal. In the case of the ‘con’ file, the second column is the sum of responses of
all orders, which should be compared to ‘out’. The following columns are one-
order responses, starting with the first-order one. Generated by funder and
funderalt.

in14940.dat/out14940.dat/con14940.dat
Input (in), exact response (out) and approximate response by convolution with the
susceptibilities (con) of the example system with input flux variation

1 0.49cos(40)inJ �� � � . The first column of all files is real time and the second
one is the value of the signal. In the case of the ‘con’ file, the second column is
the sum of responses of all orders, which should be compared to ‘out’. The
following columns are one-order responses, starting with the first-order one.
Generated by funder and funderalt.

in19930.dat/out19930.dat/con19930.dat
Input (in), exact response (out) and approximate response by convolution with the
susceptibilities (con) of the example system with input flux variation

1 0.99cos(30)inJ �� � � . The first column of all files is real time and the second
one is the value of the signal. In the case of the ‘con’ file, the second column is
the sum of responses of all orders, which should be compared to ‘out’. The
following columns are one-order responses, starting with the first-order one.
Generated by funder and funderalt.

15

in24920.dat/out24920.dat/con24920.dat
Input (in), exact response (out) and approximate response by convolution with the
susceptibilities (con) of the example system with input flux variation

2 0.49cos(20)inJ �� � � . The first column of all files is real time and the second
one is the value of the signal. In the case of the ‘con’ file, the second column is
the sum of responses of all orders, which should be compared to ‘out’. The
following columns are one-order responses, starting with the first-order one.
Generated by funder and funderalt.

*.nsd
The same as the files with .dat extension, except that noisy data are used (additive
white Gaussian noise, standard deviation equal to 5% the value of the reference
state). Generated by funderns.

PUBLIC METHODS OF Susceptibility

Susceptibility();

Default constructor. It is not allowed and will terminate the program.

Susceptibility(int order, int size, double scale, System *name, char flags);
Parameters

order Order of the approximation
size Number of discrete-time points
scale Time increment between discrete-time points
name Name of the system to be used for derivative calculations

FD_VERBOSE Give extra information while calculatingflags

FD_NO_VERBOSE Do not give extra information
Allocates memory for order susceptibilities and their errors and calculates
functional derivatives of the system response. The response must be defined
internally in the system. The FD_VERBOSE flag causes the object to display
information while calculating the susceptibilities, including the order of the
susceptibility being calculated, the number of perturbations used at any given
time, the perturbation times and any inaccuracies of the calculation. An asterisk
indicates the latter (*), which is followed by the derivative orders, the time point
at which the error occurred and the accuracy achieved.

Susceptibility(char *name);
Parameters

name Name of the binary file to be read
Allocates memory for the number of susceptibilities specified in the binary file
name and reads the data from the file. It also allocates memory for the errors, but

16

does not read them. Susceptibilities need not be calculated if this constructor is
used. If the file is not found, cannot be opened or its format is incorrect, an error is
prompted and the program is terminated.

~Susceptibility();

Deallocates the susceptibilities and their errors. It need not be called explicitly.

void WriteToBinaryFile(char *name, char flag);
Parameters

name Name of the binary file to be written
FD_SUSCEPTIBILITY Write susceptibilitiesflag

FD_ERRORS Write errors
Writes a binary file with the susceptibilities of all orders. It also stores information
on their size and scale, and on the order of the approximation. Only one flag is
accepted. If ambiguous, the errors will be written.

void ReadBinaryErrors(char *name);
Parameters

name Name of the binary file to be read
Reads a binary file and sets the errors of the susceptibilities. The latter must have
been read from another file by using Susceptibility(char *name). If the file is
not found, or if its format is not correct, an error is prompted and the program
terminates.

void RawToTextFile(char *name, char flag);
Parameters

name Name of the text file to be written
FD_WITH_ERRORS Include the errors in the text fileflag

FD_WITHOUT_ERRORS Do not include the errors
Writes the susceptibilities to a text file exactly in the same order as they are stored
in the computer memory. The structure of the file is:

susceptibility_order susceptibility_value [error_value o/*]

This file should be used primarily to check the correctness of the calculations. If
this method is called with the flag FD_WITH_ERRORS, the last two columns are
written, with the errors and the accuracy, ‘o’ (accurate) or ‘*’ (inaccurate). If the
file cannot be created, the program terminates.

17

void FirstToTextFile(char *name, char flag);
Parameters

name Name of the text file to be written
FD_WITH_ERRORS Include the errors in the text fileflag

FD_WITHOUT_ERRORS Do not include the errors
Writes the first susceptibility to a text file:

real_time susceptibility_value [error_value o/*]

The last two columns are written only if the method is called with the flag
FD_WITH_ERRORS. The last column is ‘o’, if the specified accuracy was
achieved, or ‘*’, if not. If the file cannot be created, the program terminates.

void SecondToTextFile(char *name, char flags);
Parameters

name Name of the text file to be written
FD_WITH_ERRORS Include the errors in the text file
FD_WITHOUT_ERRORS Do not include the errors

flags

FD_GNUPLOT Use gnuplot format
Writes the second susceptibility (if any) to a text file:

real_time second_perturbation_time susceptibility_value [error_value o/*]

The last two columns are written only if the method is called with the flag
FD_WITH_ERRORS. The last column is ‘o’, if the specified accuracy was
achieved, or ‘*’, if not. If the flag FD_GNUPLOT is on, a carriage return is
written between real time blocks. This is required for plotting with the GNU
application gnuplot. The plotting mode must be parametric. For example:

set parametric
splot ‘file.dat’ u 1:2:3

If the file cannot be created or there is no second susceptibility, the program
terminates.

void ThirdToTextFile(char *name, int 2nd_time, char flags);
Parameters

name Name of the text file to be written
2nd_time Fixed time of the second perturbation

FD_WITH_ERRORS Include the errors in the text file
FD_WITHOUT_ERRORS Do not include the errors
FD_GNUPLOT Use gnuplot format

flags

FD_SECOND_TIME Write the 2nd perturbation time

18

Writes a section of the third susceptibility (if any) to a text file:

[second_perturbation_ time] real_time third_perturbation_time susceptibility_value [error_value o/*]

The first column is the fixed second perturbation time only if the flag
FD_SECOND_TIME is on. The last two columns are written only if the method is
called with the flag FD_WITH_ERRORS. The last column is ‘o’, if the specified
accuracy was achieved, or ‘*’, if not. If the flag FD_GNUPLOT is on, a carriage
return is written between real time blocks. This is required for plotting in
parametric mode with the GNU application gnuplot. For example:

set parametric

splot ‘file.dat’ u 1:2:3 or
splot ‘file.dat’ u 2:3:4 (if FD_SECOND_TIME is on)

If the file cannot be created or there is no third susceptibility, the program
terminates.

void TestSums(char *name);
Parameters

name A file name to write the areas under the susceptibilities
Calculates the areas under the susceptibilities and writes them to stdout and to
the specified text file.

Response operator*(Signal &);

Calculates multiple convolutions of a signal (the input flux variation) with the
susceptibilities of a system. The result is returned as a Response object, which
contains all the orders of the response and their total sum. This sum is the
approximation to the (variation of the) response of the system. The operation itself
is commutative, but the method is written so that the signal must be left-
multiplied. This method overloads ‘*’. It needs not be called explicitly. For
example:

int tau=50;
double dt=0.1;

Signal sig(tau, dt); // Create a step function
 // of 50 points and time
 // increment of 0.1
Susceptibility sus(“suscept.dat”); // Read the suscetibilities
 // of a system from a file
Response res; // Create a response object

// NOTE: sig*sus is not defined
res = sus*sig; // Calculate the response

19

 // The method
 // Susceptibility::operator*
 // is implicitly called

If the signal and the susceptibilities are not in the same scale or the number of
discrete-time points is different, this method prompts an error and the program
terminates.

int GetOrder();

Retrieves the order of the approximation, i.e. the number of susceptibilities in the
object.

int GetSize();

Retrieves the number of discrete-time points of the approximation.

double GetTimeInc();

Retrieves the time increment used for discretizing the signals.

PUBLIC METHODS OF Signal

Signal();

Creates a step function of 100 discrete-time points and time increment equal to 0.1

Signal(int size, double scale);
Parameters

size Number of discrete-time points
scale Time increment between discrete-time points

Creates a step function with the specified parameters.

Signal(double *data, int size, double scale);
Parameters

data Pointer to a vector containing the discrete time course of the signal
size Number of discrete-time points
scale Time increment between discrete-time points

Creates a signal with the specified parameters and from a vector of data.

Signal(const Signal &);

Copy constructor. Implicitly called when initializating in declarations.

~Signal();

Destruction of the signal deallocates the memory reserved for the data.

20

Signal operator+(const Signal &);

Addition of signals means addition point by point. If the signals are not in the
same scale or the number of discrete-time points is different, this method prompts
an error and the program terminates.

Signal operator-(const Signal &);

Subtraction of signals means subtraction point by point. If the signals are not in
the same scale or the number of discrete-time points is different, this method
prompts an error and the program terminates.

Signal operator*(const Signal &);

Product of signals means convolution of signals. This is a commutative operation.
If the signals are not in the same scale or the number of discrete-time points is
different, this method prompts an error and the program terminates.

Signal operator/(const Signal &);

Division of signals means deconvolution. The first point of the second signal must
be different from zero. Otherwise, the program terminates. If the signals are not in
the same scale or the number of discrete-time points is different, this method
prompts an error and the program terminates.

Signal operator+(const double);

Addition of a constant means addition of the constant to every point.

Signal operator-(const double);

Subtraction of a constant means subtraction of the constant from every point.

Signal operator*(const double);

Product by a constant means product of every point by the constant.

Signal operator/(const double);

Division by a constant means division of every point by the constant. If the
constant is zero, the program terminates.

Signal & operator=(const Signal &);

Assignment of signals.

Signal Derivative();

Derivative of the signal, assuming that the value of the signal at the origin is zero.
It returns the derivative obtained after the operation.

double Integral();

Returns the area under the signal.

21

Signal Primitive();

Returns the primitive of the signal that crosses the origin.

void WriteToTextFile(const char *name);
Parameters

name A text file name to write the signal
Writes the signal to a text file, as follows:

real_time value_of_the_signal

If the file cannot be created, the program terminates.

void ReadFromTextFile(const char *name);
Parameters

name A text file from which the signal has to be read
Reads a signal from a text file of the structure created by Signal ::

WriteToTextFile. If the file cannot be created or if it is too short, the program
terminates.

int GetSize();

Retrieves the number of discrete-time points of the signal.

double GetTimeInc();

Retrieves the time increment between two consecutive points of the signal.

double *GetPtrToData();

Retrieves a pointer to the data.

PUBLIC METHODS OF Response

Response();

Creates an order-one response of 100 points and time increment equal to 1.

Response(double **data, int order, int size, double scale);
Parameters

data Pointer to a matrix containing the time course of the responses
order Order of the response
size Number of discrete-time points
scale Time increment between discrete-time points

Allocates responses up to order, plus another vector for the sum of the responses of
all orders and copies the data from the input matrix.

22

Response(const Response &);

Copy constructor. Implicitly called when initializating in declarations.

~Response();

Destruction of the object deallocates the memory reserved for the data.

Response & operator=(const Response &);

Assignment of responses.

Signal operator[](const int index);

Parameters
index Order of the response to be returned. Zero is the sum of all orders

Retrieves the response of a given order, as indicated by the index. For example:

Signal sig; // Creates a Signal object
Response res; // Creates a default response

sig=res[0]; // Sum of the responses of all orders
sig=res[1]; // Response of first order

If the index is negative or exceeds the order, the program terminates.

void WriteToTextFile(const char *name);
Parameters

name A text file name to write the response
Writes the response of all orders to a text file of the form:

real_time sum_of_responses first_order_response [...]

If the file cannot be created, the program terminates.

int GetOrder();

Retrieves the order of the response, i.e. the number of responses of different
orders that form the object.

int GetSize();

Retrieves the number of discrete-time points of the responses.

double GetTimeInc();

Retrieves the time increment used for discretizing the signals.

23

PUBLIC METHODS OF System

System is an abstract class. Therefore, it cannot be instantiated. Users must derive a
class from this one providing at least the method void EvaluateSystem(). See below
for a description of the function of this method and for a list of the protected data
members that can be exploited for its development.

System();

Default construction is not allowed and terminates the program.

System(double step, int species, int rates, int input_species, int output_rate);
Parameters

step Time increment used for integration
species Number of species or concentrations
rates Number of velocities, including output fluxes
input_species Number of the species that receives the input flux
output_rate Number of the rate to be considered the response of the system

Allocates memory for the concentrations, their time derivatives, the rates, the
input fluxes (in principle, as many as concentrations) and the steady state
concentrations. The integration step must be shorter than the time increment used
in Susceptibility, Signal and Response. Otherwise, the first time the Functional is
used the program terminates. The details of the system must be provided by the
user in a class derived from this one.

virtual ~System();

Deallocates the memory of all the concentrations, rates, fluxes, et cetera. The
user-derived system need not worry about this.

void Functional (const DER &derivative_parameters);
Parameters

A structure of type DER. Its members are:
int tau Number of discrete-time points
int pert Number of perturbations
int *perttimes Vector of perturbation times
double dt Time increment (func. derivatives)
double *x Perturbation magnitudes

derivative_parameters

double *integ Integration result to be returned
Integrates the differential equations provided in a user-derived system. The time
increment dt must be equal or longer than the increment used for integration. The
functional is evaluated for pert instantaneous variations of the concentration at
perttimes times. The values of the variations are given by x, which is the point
where an evaluation is needed for calculating an approximate derivative. The

24

result is returned in the vector integ. This method uses EvaluateSystem and
IntegrateOneStep. A simple Euler algorithm is provided for the latter, but the
former is expected to be completely defined by the user.

PROTECTED METHODS OF System

void IntegrateOneStep();

System provides this elementary integration engine that uses Euler’s algorithm. It
uses the values of the protected data members numc, c, dc and dtint (see below).
The user could override this method, which is needed by Functional and
InitSS.

void InitSS();

This method calculates and stores in ss (see protected data members below) the
steady state concentrations of the system. It also sets the input and output
reference fluxes, inR and outR. The input fluxes and other parameters must be
specified in the user-defined constructor of the derived class. This method should
always be called by the user’s constructor. The steady state is defined as the set of
concentrations that produce concentration time derivatives below the constant
CONV for all species. This constant is set to 1e-6 in funder.h. The user can
override it by defining it before including funder.h (or at the beginning of
funder.cpp, if the single-file version of the source code is used).

virtual void EvaluateSystem()=0;

This is an abstract method, for which no definition is given in System. Hence, the
class System is an abstract one and cannot be instantiated (=0 prevents the user
from doing so). The user must provide this method in any derived class. It is
supposed to calculate the velocities, v, and the derivatives of the concentrations,
dc, from the current values of the concentrations, c (see below for protected data
members). The differential equations of the system are likely to be implemented
in this method.

PROTECTED DATA MEMBERS OF System

The class System contains the following protected data members, which can be accessed
from any derived class:

double t Real time. For defining time-dependent properties
double dtint Integration time increment or step
double *c Vector of concentrations
double *dc Vectors of derivatives of the concentrations

25

double *v Vector of velocities, including output fluxes
double *f Vector of input fluxes
double *ss Vector of steady state concentrations
double inR Reference input flux
double outR Reference output flux
int numc Number of concentrations (and possibly input fluxes)
int numv Number of velocities, including output fluxes
int pertc Index of the species to be perturbed (input species)
int resv Index of the rate to be considered the response

CREATING A USER-DEFINED SYSTEM BY DERIVING A CLASS FROM
THE ABSTRACT CLASS System

Deriving a class from the abstract class System involves three mandatory steps, which
are described below.
1. Declare a new class from System. Grant public inheritance access.

class UserSystem : public System
 {
 ...
 };

2. Write a constructor for the derived class that constructs an object of the class System
by means of an initialization list. Make sure that the constructor calls InitSS at the
end of the body. The constructor may be used to initialize the parameters of the
system.

UserSystem :: UserSystem() :

System(step, species, rates, input_species, output_rate)
 {
 ...
 InitSS();
 }

3. Provide the method EvaluateSystem. This method should evaluate the velocities
and the derivatives of the concentrations (the differential equations of the system).

void UserSystem :: EvaluateSystem(void)
 {
 // Evaluation of the velocities
 v[0] = ...;
 ...
 v[numv-1] = ...;

26

 // Differential equations
 dc[0] = ...;
 ...
 dc[numc-1] = ...;
 }

In addition, the user may want to define additional data types and methods that support
the constructor and EvaluateSystem, and that provide additional functionality. For
example, methods may be defined that evaluate a rate equation from a set of parameters
and concentrations.

